Parallelizing frequent web access pattern mining with partial enumeration for high speedup

نویسندگان

  • Peiyi Tang
  • Markus P. Turkia
چکیده

The maximum speedup of direct parallelization of pattern-growth mining algorithms for long sequences is limited by the load imbalance among the parallel tasks. In this paper, we present a scheme to parallelize pattern-growth mining algorithms using partial enumeration for high speedup. The experimental results show that partial enumeration increases the achievable speedup of parallel mining significantly for the databases with long sequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Fuzzy Utility Based Frequent Patterns Mining Approach for Mobile Web Services Sequences

Nowadays high fuzzy utility based pattern mining is an emerging topic in data mining. It refers to discover all patterns having a high utility meeting a user-specified minimum high utility threshold. It comprises extracting patterns which are highly accessed in mobile web service sequences. Different from the traditional fuzzy approach, high fuzzy utility mining considers not only counts of mob...

متن کامل

Mining of Users’ Access Behaviour for Frequent Sequential Pattern from Web Logs

Sequential Pattern mining is the process of applying data mining techniques to a sequential database for the purposes of discovering the correlation relationships that exist among an ordered list of events. The task of discovering frequent sequences is challenging, because the algorithm needs to process a combinatorially explosive number of possible sequences. Discovering hidden information fro...

متن کامل

Parallelizing Frequent Itemset Mining with FP-Trees

A new scheme to parallelize frequent itemset mining algorithms is proposed. By using the extended conditional databases and k-prefix search space partitioning, our new scheme can create more parallel tasks with better balanced execution times. An implementation of the new scheme with FP-trees is presented. The results of the experimental evaluation showing the increased speedup are presented.

متن کامل

A Neoteric Web Recommender System based on Approach of Mining Frequent Sequential Pattern from Customized Web Log Preprocessing

A real world challenging task of the web master of an organization is to match the needs of user and keep their attention in their web site. So, only option is to capture the intuition of the user and provide them with the recommendation list. Web usage mining is a kind of data mining method that provide intelligent personalized online services such as web recommendations, it is usually necessa...

متن کامل

Efficient Discovery of Frequent Patterns using KFP-Tree from Web Logs

Frequent pattern discovery is a heavily focused area in data mining. Discovering concealed information from Web log data is called Web usage mining. Web usage mining discovers interesting and frequent user access patterns from web logs. This paper contains a novel approach, based on k-mean and frequent pattern tree (FP-tree), for frequent pattern mining from Weblog data.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007